Ruby Payne-Scott

Ruby_Payne_Scott.jpg

It is ironic that Australia’s first female radio astronomer, a woman later held-up as a source of Australian pride, was forced out of her research position by a governmental ban on employing married women in permanent positions in public service. Payne-Scott was born in New South Wales in 1912 and studied multiple disciplines at the University of Sydney, receiving degrees in physics and education. She went to work for Australia’s Commonwealth Scientific and Industrial Research Organisation (CSIRO), where she discovered new types of solar radio bursts. During WWII she conducted top secret research into radar technology and aircraft detection.

Payne-Scott fell in love with fellow scientist William Hall, but a ban on married women holding permanent governmental jobs meant that getting married would put her career in jeopardy. They decided to marry secretly, and their plan worked for several years until the head of a stricter CSIRO administration found out, and her job status was reduced to “temporary” (with the reduction of benefits that entailed). She continued working in this position until, a few months before giving birth to her son, she resigned – no maternity was leave available – and adopted her husband’s last name.

Although she never returned to CSIRO, she did return to science after raising her son and daughter, teaching math and science at an all-girls school for over a decade. She died in 1981. Payne-Scott made significant contributions to radiophysics and radio astronomy before she was pushed out, but we can only imagine the missed opportunities caused by the ban, which wasn’t repealed until 1966. In 2008, CSIRO introduced a career-development award in her honor that provides funding for workers re-entering the workplace.

Photo Credit: Peter Hall

Sarah Diermeier-Herridge

Sarah_Diermier.jpg

This WiSE Wednesday we honor this year’s WiSE post-doc mentor awardee, molecular biologist Dr. Sarah Diermeier-Herridge. The WiSE Mentorship Awards were created to honor the men and women who are not only exceptional scientists, but also mentors to women at Cold Spring Harbor Laboratory. This year we presented our inaugural award in the post-doc or student category to Dr. Sarah Diermeier-Herridge.

Sarah received her PhD from the University of Regensburg in Molecular Biology and Genomics before joining the Spector Laboratory at Cold Spring Habor Laboratory as a Postdoctoral Research Fellow. By analyzing global gene expression data of mouse and human tumors she discovered 30 long noncoding RNAs (lncRNAs) that could be involved in breast cancer. She validated these lncRNAs as novel biomarkers and therapeutic targets using antisense knockdown and genetic knockout (Cas9/CRISPR) assays. Sarah became an Adjunct Professor at Long Island University and taught courses such as ”Molecular & Cellular Biology of Cancer" and "Advanced Topics in Cancer Biology.”

Also, while at Cold Spring Harbor Laboratory, Sarah became president of the Bioscience Enterprise Club (BEC) which focuses on enabling members to explore alternative science careers and develop entrepreneurial skills through interaction with peers and professionals representing industry, government and academic career paths. She hosted the Beyond the Bench Symposium 2017 with Keynote Speaker Dr. Jennifer Doudna and invited speakers from across the United States to discuss alternative careers to the academic path.

Many consider Sarah a mentor, especially, Tumi Tran, who nominated Sarah for her ability to provide guidance and confidence to her while co-organizing the Beyond the Bench Symposium 2017. While a mentor, Sarah is also a friend and role model, a true inspiration for women in science.

Congratulations are also in order since Sarah recently became a Professor at Otago University in New Zealand in the Department of Biochemistry and will be starting in the new year. Her lab is currently hiring so check out her webpage: http://www.otago.ac.nz/medical-school/people/expertise/profile/index.html?id=2797

This WiSE Wednesday was brought to you by a guest author, WiSE VP Alexandra Ambrico. Thanks Alex!

Mary Claire-King

Mary-claire_king.jpg

You probably know about the BRCA1 gene and its link to breast cancer thanks to Angelina Jolie, but do you know about the woman who discovered it, Mary-Claire King? King was born in 1946 in Evanston, Illinois. She began her secondary education with her eye (and mind) on a career in math; following a degree in mathematics from Carleton College in Northfield, Minnesota, she began a PhD in statistics at the University of California, Berkeley. While there, she took a genetics class that so inspired her that she switched to Berkeley’s genetics program. She never gave up her love for math, however – instead she built an incredibly successful career upon applying mathematical modeling to biological questions.

In her PhD work, she compared the sequences of protein-coding genes for human and chimpanzee genes and found that the amino acid sequences of the proteins they produced were incredibly similar (99% identical). So why are humans and chimps so different? King proposed that evolution could be driven by changes in the expression of these genes through changes in regulatory DNA sequences, rather than changes in the coding sequences (later found to be true). She moved to Chile to teach after graduating in 1973, but a violent military coup led her to return to California, where she began a postdoctoral fellowship in cancer epidemiology and genetics at the University of California, San Francisco (UCSF) and then started as an assistant professor at UC Berkeley (where she was explicitly told she was only hired because of affirmative action).

At the time, cancer research was mainly focused on cancer-causing viruses, but King knew that breast cancer ran in certain families and believed that there must be a genetic cause in these cases. In order to collect more data on breast cancer inheritance, she convinced the National Cancer Institute (NCI) to add questions about family history of cancer to a survey they were conducting. Using this data, she developed a mathematical model that accounted for hereditary cases of breast cancer, but the responsible gene(s) were still unknown. After 17 years of hard work, King was able to map the gene, BRCA1. Women with BRCA1 mutations can have a significantly increased risk of developing breast or ovarian cancer, and King has worked hard to develop tools to cheaply screen for such mutations.

In addition to applying her mathematical & biological skills to evolution and cancer genomics, King has tackled humanitarian issues – developing mitochondrial DNA sequencing technology to help reunite families torn apart by war and identify soldiers’ remains. She moved to the University of Washington in 1995, where she is a Professor of Genome Sciences and Medicine. She received a Lasker Award in 2014 and a National Medal of Science in 2016 that recognized both her scientific and humanitarian achievements.  

Linda Van-Aelst

linda_van-aelst.jpg

This WiSE Wednesday we honor this year’s WiSE faculty mentor awardee, molecular biologist Dr. Linda Van Aelst. Scientists are often judged by their number of papers, citations, or scientific awards but many of our greatest minds have also served the field as influential mentors to junior colleagues. For women, obtaining a strong mentor is a crucial part of advancing their careers in a male-dominated field. To highlight the invaluable colleagues who support and inspire us, we created the WiSE Mentorship Awards to honor women and men who have served as personal or professional mentors to women here at CSHL, and we were thrilled to present the inaugural award in the faculty category to Dr. Van Aelst.

Van Aelst’s association with CSHL began in 1992 when, after receiving a PhD in molecular biology from the Catholic University of Leuven, Belgium, she joined Michael Wigler’s lab as a postdoctoral fellow. She went on to earn her own lab here and was awarded full professorship in 2006. Her lab studies molecular signaling pathways and their roles in development and diseases including cancer and neurological disorders. She recently helped discover molecular forces that help direct new brain cells to their final location. Throughout her long tenure here, she has been a prominent member of the CSHL community, and has served as a stable source of guidance to colleagues at all levels.

Van Aelst received multiple nominations for the mentorship awards from her colleagues who cited her assistance with promotion and grant-writing. Fellow scientists describe her as “incredibly valuable” and “a wonderful colleague,” always willing to meet and provide advice. 

Life doesn’t begin and end in the lab, and neither does Van Aelst’s mentorship - in addition to helping with these technical aspects of academia, she has helped her colleagues through hard times in their personal lives. 

Her WiSE award joins a long list of honors including awards from the Neurofibromatosis Foundation and the Dana Foundation, and we anticipate many more are still to come. Thank you Dr. Van Aelst for helping make CSHL a great place for women to work!

Photo by Michael Englert/CSHL

Betty Harris

Betty_Harris.jpg

As we at WiSE experienced firsthand teaching neuroscience to Girl Scouts last summer, sharing the joys of science with children can be an immensely rewarding experience for the teachers and an exciting, even inspirational, experience for the participants. Thanks to this week’s WiSE Wednesday honoree, Girl Scouts across the US are being introduced to chemistry at a young age and earning a merit badge in the process.

Betty Harris was born in 1940 in Louisiana. After earning an BS in chemistry from Southern University and MS in chemistry from Atlanta University, she taught chemistry and math for ten years before continuing her own graduate studies. She earned a PhD in chemistry from the University of New Mexico, then worked as a research chemist at Los Alamos National Laboratory. While there, she performed diverse hazardous material research, developing methods to de-contaminate hazardous waste sites, synthesize safer explosives, and detect trace amounts of explosives (she received a patent for a test used at crime scenes). Having spent time in academia and governmental research, she next set her sights on industry, becoming chief of chemical technology for Solar Turbine Incorporated (STI). At STI she managed research on a different type of investigation – the case of the corroding gas turbine engines – the culprits turned out to be sulfuric acid & soot). She then returned to government service, finishing her career with eleven years as a certified document review at the Department of Energy (DOE) Office of Classification, where she helped determine what DOE information should be classified and what could be released.

Harris has been a strong advocate for comprehensive STEM education, and thanks to her work with the Girl Scouts, girls are learning first-hand that chemistry is fun and exciting, not boring or scary!

Photo credit: Los Alamos National Laboratory

Isabella Karle

Isabella_Karle.jpg

Isabella Karle (1921-2017). Last month we lost another great woman in science, crystallographer Isabella L. Karle, who helped develop methods to determine the structure of biological molecules. Isabella was born in Detroit in 1921 and received a PhD in chemistry from the University of Michigan, where forced alphabetical seating in a class led her to meet her future husband, Jerome. During WWII Karle worked on the Manhattan Project before joining Jerome at the Naval Research Laboratory (NRL) in Southwest Washington in 1946.

At the NRL’s Laboratory for the Structure of Matter, the Karles performed revolutionary work. Jerome and mathematician Herbert Hauptman formulated a theoretical technique, “direct methods,” that would dramatically reduce the amount of time required to determine the structure of molecules. While Jerome and Herbert did most of the theoretical work, Isabella made the theoretical possible, teaching herself crystallography and devising ways (including her influential “Symbolic Addition Procedure”) to apply “direct methods” to actually solve structures. Without Isabella, “direct methods” were purely theoretical and therefore met with skepticism; her success in translating the complex mathematics into atomic-resolution structures allowed the technique to gain widespread recognition. It has since been used to help solve tens of thousands of structures, aiding in drug development as well as basic research.

Jerome and Hauptman were awarded the 1985 Nobel Prize in chemistry – an award we might add that can be shared three-way… (Jerome himself was devastated that Isabella was looked over). Nevertheless, Isabella did receive other honors, including the National Medal of Science bestowed upon her by Bill Clinton in 1995. Karle and her husband retired in 2009, after a combined 127 years of service.

Throughout her life, Karle faced gender discrimination. In high school, a female chemistry teacher helped fuel her scientific ambitions, allowing her to push aside criticism from other teachers including one who told her that chemistry was not an appropriate subject for women. Karle sure proved that teacher wrong, going on to have a long, incredibly successful career in science and serving as an inspiration for women around the world as well as within her own household (her three daughters are all scientists). Karle died of brain cancer October 3, and her death has been deeply felt.

Photo Credit: Naval Research Laboratory

Jane Richardson

IMG_2436.JPG

This special WiSE Wednesday, we revisit one of our past honorees as she visits us! Jane Richardson is a true “Renaissance Woman;” born in New Jersey in 1941, her highly productive career has included work in the areas of astronomy, philosophy, biophysics, art, and computational biology (just to name a few). As a biophysicist and structural biologist, she worked with her husband, David Richardson, to solve some of the first protein structures. Jane knew that these structures held key information about how the proteins worked, but the high concentration of atoms in the models made them hard for a specialist, let alone an outsider, to interpret. Therefore, she began drawing representations of these structures that highlighted just the major structural features. These so-called ribbon diagrams not only enabled those outside of the biophysical field to appreciate structural biology, but also allowed researchers to identify structures that were conserved between different proteins. This had major implications for understanding the function and evolution of these molecules.

fullsizeoutput_60e.jpeg

She made her original diagrams by hand - it was fascinating to hear her discuss the care she took to get the details right, including wrapping mailing tubes in tape to see what helixes look like from different angles. This painstaking work has given her an unbeatable talent for moving seamlessly between 2D and 3D computer graphical representations, a talent she has graciously shared freely with the public (she uploads her work, open license, to WikiMedia Commons and she is proud to have convinced the RCSB PDB to make their “Molecule of the Month” graphics similarly accessible).

Jane is still an active scientist today in her lab at Duke University, where her many projects include developing software to aid in the solving of molecular structures. One such piece of software, MolProbity, uses knowledge of the biophysical properties of molecules to allow structural biologists to locate and fix problems in their models. While some may debate over the benefits of science versus the humanities, Jane Richardson shows that the two are not mutually exclusive – in fact, they can be quite complementary. This was reflected in a great piece of inspiration she left us with: "There's no such thing as photorealism for macromolecules - so we're free to seek the best alternative representations."

In a room dominated by men, Jane could sure hold her own, answering questions and offering insights with a brightness of mind and wit. It was a great honor to meet her.

Joan Steitz

IMG_2429.JPG

There are some scientists who can capture an entire room; one such person is this week’s WiSE Wednesday honoree, Dr. Joan Steitz, whose enthusiasm for science I had the honor of witnessing this past weekend. As one of the key figures in research of mRNA splicing, she visited Cold Spring Harbor Laboratory as co-organizer of a special meeting: 40 years of mRNA splicing: from discovery to therapeutics. 

40 years ago, it was discovered that, unlike bacterial proteins, which are coded for by uninterrupted DNA sequences, eukaryotic proteins have more complicated instructions, containing regulatory regions called introns that have to be removed to produce the final messenger RNA (mRNA) that gets translated into protein. Steitz discovered complexes of protein and RNA called small nuclear ribonucleoproteins (snRNPs) that carry out this process (termed splicing). Furthermore, she found that the RNA in these snRNPs bound to complementary sequences at splice-site junctions, providing an explanation for splicing specificity. These are just a couple of her many landmark discoveries, but she never expected to become the “science superstar” she is.

Steitz was born and raised in Minneapolis, Minnesota. After receiving an undergraduate degree in chemistry from Antioch College in Yellow Springs, Ohio, she planned to enter medical school. Wanting to pursue her love of science, she saw medical school as an “available” option for a woman, whereas, not seeing any female scientific professors, she saw academia as a men’s domain. However, after a research experience the summer before she was due to start at Harvard Medical School, she determined that the lack of women in science shouldn’t keep her from seeking a research career. She transferred her acceptance from Harvard Med to Harvard’s biochemistry graduate program, where she was the only woman in the class and faced gender discrimination (one professor refused to take her on in his lab reasoning that it would be a waste of his time to train a woman who’d just leave and start a family). After a postdoc at the University of Cambridge in England, Joan and her husband (and fellow biochemist) Thomas took positions at Yale, where they remain to this day, and Joan continues to research the many roles RNA plays in cells. Joan has received many honors including a National Medal of Science and is a Howard Hughes Medical Institute (HHMI) investigator.

Hearing Steitz talk, you would never imagine that, as a college student, she doubted she had the enthusiasm for research required for the demands of life as a scientist. And, knowing about her decades of success at Yale, it’s heartening as an insecure grad student to learn that she had trouble picturing herself as a professor (let alone one whom starstruck grad students would be asking to take a picture with). In addition to being an amazing scientist, Steitz is a strong champion for women in science, advocating for resources including flexible childcare options. It was an honor to meet her.

Emīlija Gudriniece

Emilija_Gudriniece.JPG

Organic chemist Emīlija Gudriniece (1920-2004) was one of the first scientists to recognize the potential to produce fuel from vegetable oils.

Gudriniece was born and raised in Latvia, where she studied chemistry at the University of Latvia. After becoming a professor at Riga Polytechnic, she founded a Department of Organic Synthesis and Biotechnology there and served as department head for 27 years. A prolific scientist with broad interests, she synthesized useful compounds including the antibiotic furanicide and antioxidants for makeup. While much of her work benefitted the cosmetics industry, she was by no means a “girly girl” and her refusal to be confined by gender stereotypes likely helped inspire her work on biofuel; an avid motorcyclist, she won the Latvian Women’s Motorcycling Championship two times. 

Gudriniece felt close ties to her homeland and, where she saw gaps in Latvia’s opportunities for scientists, she worked to fill them; she organized numerous scientific meetings and conferences in Latvia, revived the Latvian Chemical Society, and organized national and international scientific congresses of Latvian scientists. Known and admired for her enthusiasm and energy, Gudriniece loved working with students and guided over two dozen to successful completion of a degree. She died in 2004 in Latvia, the country she loved, a country whose scientific community and resources she worked tirelessly to strengthen.

Christiane Nüsslein-Volhard

Christiane_Nüsslein-Volhard.jpg

The lack of women among this year’s Nobel Prize winners has brought attention to the serious underrepresentation of women in positions of power in science. This WiSE Wednesday, we honor one of the rare female Nobel laureates, German developmental biologist Dr. Christiane Nüsslein-Volhard not only for her accomplishments in science but also for her dedication to helping other women succeed in the field.

Nüsslein-Volhard won the Nobel Prize in Physiology or Medicine in 1995 (shared with Eric Wieschaus and Edward B. Lewis) for her work in developmental biology. Nüsslein-Volhard used chemicals to introduce random mutations in fruit flies, then observed the development of these flies’ embryos. Fruit fly larvae are segmented and undergo a distinct, carefully orchestrated series of developmental “steps” as they establish their body plans. Different mutations disrupted different steps and by characterizing these mutations, Nüsslein-Volhard helped elucidate genetic logic of early development.

Although this work was performed in fruit flies, much of it has been shown to apply to other organisms as well. This includes zebrafish, another model organism which Nüsslein-Volhard later turned to studying at the Max Planck Institute for Developmental Biology in Tübingen, Germany where she has served as Director since 1985. She has also served on many committees including the National Ethics Council of Germany, where she promoted ethical biological research in a world of rapidly advancing technology.

Nüsslein-Volhard knows that her success story as a woman in science is much too rare and she works to help address the factors holding women back from achieving positions of influence. For example, in addition to the hard work required for success in science, women often face additional demands of their time including childcare responsibilities. Lack of affordable childcare options can prevent women from attending conferences and networking events, which makes it difficult for them to advance up the career ladder. Knowing this, Nüsslein-Volhard started a foundation (the Christiane Nüsslein-Volhard Foundation) that supports female graduate students and postdocs through grants to assist with childcare and household chores. Who knows, maybe one of these grant recipients is a future Nobel laureate! 

Photograph by Rama, Wikimedia Commons, Cc-by-sa-2.0-fr

Patricia Bath

Patricia_Bath.jpg

Representation matters. Case in point: this week’s WiSE Wednesday honoree Dr. Patricia Bath, whose work both inside and outside the operating room saved the sight of many.

Born in Harlem, New York in 1942, Bath showed an early aptitude for science, which her parents encouraged. She received a medical degree from Howard University and went on to specialize in ophthalmology. During a fellowship at Columbia University, she observed that African American patients were disproportionally affected by preventable and/or treatable eye problems. While some scientists might have jumped to trying to find genetic roots to this disparity, Bath took a more holistic view. Having grown up dealing with poverty and racism, she was all too aware of how they could affect access to care. She also knew that without prevention information, early detection, and medical treatment, curable eye ailments could lead to irreversible blindness. After she found that this was the case for her African American ophthalmology patients, she founded a discipline called Community Ophthalmology to provide access to basic eye care treatment and education to everyone. Community Ophthalmology has since become a worldwide discipline that has saved the sight of countless people, including through the work of the American Institute for the Prevention of Blindness, which she co-founded in 1976.

In addition to expanding access to care, Bath also worked to improve the care patients received, inventing a tool to remove cataracts, the Laserphaco Probe. She patented the probe (which is still used) in 1988, making her the first female African American doctor to patent a medical device. Among her other firsts – she became the first female Ophthalmology Chair in the US and the first female African American surgeon at UCLA. She retired from UCLA in 1993, but continues to advocate for access to eye care, which she considers a basic human right. In an effort to expand this access, she has taught telemedicine at Howard University and Grenada’s St. George University.

Asima Chatterjee

Asima_Chatterjee.jpg

Did you see Saturday’s Google Doodle and wonder what it was all about? The image, with “Google” spelled out in organic chemical line drawings, honored the 100th birthday of this week’s WiSE Wednesday honoree, the late Dr. Asima Chatterjee, an Indian chemist who developed drugs to treat epilepsy and malaria based on chemicals from plant extracts.

Chatterjee was born in Bengal and raised in Calcutta, where she earned a PhD in organic chemistry from the University of Calcutta. Interested in why certain plants were effective at treating disease, Chatterjee dove into the field of phytomedicine. After extracting and purifying active chemicals from plants, she characterized them and developed techniques to synthesize them in the lab. With large quantities of these compounds, she could study their mechanism of action against diseases including cancer, epilepsy, and malaria.

In addition to being a leader in phytomedicine, Chaterjee was a trailblazer for women in science; she founded a department of chemistry at the Lady Bradbourne College of the University of Calcutta, and her PhD was the first Doctorate of Science granted to a woman by an Indian University. Her numerous honors included the Shanti Swarup Bhatnagar Award in chemical science (she was the first woman to win), fellowship in the Indian National Science Academy, and election as the Indian Science Congress Association’s first female General President.

Chaterjee loved science, and she passed on her passion for chemistry to her daughter, Julie, who became a successful organic chemist. She also served as an inspiration and mentor for numerous students and colleagues. Chaterjee passed away in November 2006.

Photo Credit: The Indian Scientists, CC BY-NC-SA 3.0

Lynn Margulis

Lynn_Margulis.jpg

Evolutionary biologist Lynn Margulis transformed the way we think about the origins of life. Eukaryotic (plant, animal, and fungal) cells contain membrane-bound “organelles” that are not present in bacterial cells. In her groundbreaking endosymbiotic theory of organogenesis, Margulis proposed a mechanism by which these organelles, including mitochondria (cellular “powerhouses”) and chloroplasts (plants’ photosynthetic factories), began as bacterial cells taken in (endosymbiosed) by other cells. After being endosymbiosed, these bacteria evolved to fulfill the energy needs of the host cell. This theory was incredibly controversial at the time (fourteen publishers rejected it before it was finally published) but genetic and experimental evidence has provided strong support for it, and it is now widely accepted.

Margulis was born in Chicago in 1938. She earned a Liberal Arts degree from the University of Chicago followed by a master’s in genetics and zoology from the University of Wisconsin before going on to obtain a PhD from the University of California, Berkeley. She taught for almost two decades at Boston University before transferring to the University of Massachusetts at Amherst. Margulis’ initially controversial endosymbiotic theory turned out to be one of her least controversial hypotheses; described by many as a “scientific rebel,” she spoke out against “Neo-Darwinists” who believe that evolution occurs linearly through small changes within an organism, arguing instead that exchange of genetic material between different organisms plays a larger role than Neo-Darwinists give credit to.

Despite often thriving among scientific “outcasts,” Margulis also received recognition from the more mainstream scientific community; she was elected to the US National Academy of Sciences in 1983 and received the National Medal of Science in 1999. Margulis passed away in 2011 from complications of a stroke, but her son, Dorion Sagan, with whom she wrote many books, continues her legacy of communicating science.

Mary Amdur

Mary_Amdur.jpg

Many researchers talk about “living and breathing” science – this metaphor is particularly apt for this week’s WiSE Wednesday honoree, Mary Amdur (1921-1998), who pioneered research on air pollution’s harmful effects on the lungs. In studying the chemical nature of smog, Amdur discovered that sulfur dioxide could react with particles released from industrial plants to form harmful molecules capable of damaging the lungs. Despite pushback from both industry and academia, she could not be intimidated into backing down.

Her initial work was carried out at the Harvard School of Public Health (HSPH) with funding from the American Smelting and Refining Company (AS&R). AS&R was hoping to get evidence that the sulfuric acid released by their plants was harmless; not only did Amdur come to the opposite conclusion, but she also found that the AS&R’s main emission, sulfur dioxide was also hazardous. Executives and lawyers from AS&R and other industrial companies pressured her to delay publishing her work, but, despite being a young woman in a male-dominated field, Amdur refused to give in to the pressure. Her work got published, but it came at a price: the loss of her research assistant position.

Thankfully, another professor at HSPH recognized the importance of Amdur’s work and hired her to work in his lab; there she developed an animal model for studying air pollution’s effects that allowed her to perform further influential experiments. Nevertheless, thirty years of ground-breaking work wasn’t enough to gain her tenure, or even a position above “Associate Professor” at Harvard. Despite these personal injustices, it was a fight over the denial of tenure for a colleague that led Amdur to leave HSPH for MIT, where she worked for 12 years (in a non-faculty position) before starting a research group at New York University. At NYU, she reached her highest position, “Senior Research Scientist,” but still didn’t receive tenure. She retired in 1996 but continued to write and edit scientific papers. She passed away in 1998, but she still serves as an inspiration for many in the field and her story is a great example of how great scientists (especially women and minorities) are often denied access to the top rungs of the academic ladder.

Picture original publication: Casarett and Doull’s Toxicology The Basic Science Of Poisons

Françoise Barré-Sinoussi

barre-sinoussi.jpg

When the AIDS crisis struck, some tried to isolate themselves or ignore the problem – not this week’s WiSE Wednesday honoree! French virologist Françoise Barré-Sinoussi co-discovered the cause of AIDS, human immunodeficiency virus (HIV). Before the cause of AIDS was known, homosexual men and other populations hit hard by AIDS faced strong discrimination and stigma. This discovery was a crucial step in understanding how AIDS spreads, helping to combat both the disease and the climate of fear that surrounded it.

Barré-Sinoussi made the discovery in 1983 while working at Paris’ Pasteur Institute (where she started as a volunteer). In recognition of her work, she and her former mentor Luc Montagnier were awarded the Nobel Prize in Physiology or Medicine in 2008. Barré-Sinoussi started her own lab at the Pasteur in 1988, where she continued research on HIV: basic research including factors that affect its transmission as well as more translational explorations into potential treatment and prevention measures. She has also been actively involved in international AIDS organizations including UNAIDS-HIV and the International Aids Society (where she served as president from 2012 to 2014) and has trained many of the “next generation” of AIDS researchers.

Additionally, Barré-Sinoussi has been a strong advocate for women in science. I was personally inspired by her when I had the great honor of hearing her speak last October at a special meeting at Cold Spring Harbor Laboratory: HIV/AIDS Research: Its History & Future.

photo credit: U. Montan

Tikvah Alper

Tikvah_Alper.jpg

Discrimination forced Tikvah Alper (1909-1995) to relocate frequently, but she found ways to pursue her scientific interests wherever she went, ultimately receiving fame for her discovery that, unlike viral and bacterial diseases, the infectious brain disease of sheep, scrapie, was not transmitted from animal to animal via DNA or RNA. Alper discovered this by irradiating scrapie with different wavelengths of light – wavelengths that destroy nucleic acids (DNA & RNA) didn’t affect scrapie’s ability to replicate, but wavelengths that disrupted proteins did. This led to a conceptual revolution in scientists’ understanding of scrapie and related diseases such as “mad cow disease” and kuru that  are caused by misfolded proteins termed “prions”.

Alper was born in South Africa in 1909 to a family of Russian refugees. There, she thrived in school from a young age, graduating from high school early and receiving a grant to study math and physics at Capetown University. She left South Africa in 1930 to pursue a doctorate at the Kaiser Wilhelm Institute for Chemistry in Berlin (in a department headed by past WiSE Wednesday honoree Lise Meitner). Despite early successes in her research on radiation, escalating tension in Germany led her to return to South Africa in 1933, where she married the microbiologist Max Sterne.

At the time, married women were not allowed to be appointed to academic positions, so Alper and her husband set up their own laboratory in their home’s garden, where Alper continued conducting research while also raising two sons, one of whom was born deaf (Alper learned speech therapy to help her communicate with him). She was later made a physics lecturer at Witwatersrand University and, after conducting research in Britain on the irradiation of bacteriophage (a type of virus that infects bacteria), she was made head of the Biophysics Section in South Africa’s new National Physics Laboratory. Alper was forced out of this position for her opposition to apartheid, and she and her family again left South Africa for London where she worked her way from unpaid researcher to director of Hammersmith Hospital’s MRC Experimental Radiopathology Research Unit. Even after retirement, Alper remained active as both a scientist and a feminist until her death in 1995.

Hedy Lamarr

Chances are, you’re reading this WiSE Wednesday profile with the aid of Wi-Fi. If so, you have this week’s honoree, Hedy Lamarr to thank! Better known to many as the actress who starred in mid-1900s films, Lamarr developed a frequency-hopping technology central to present-day wireless technologies including Wi-Fi and Bluetooth.

Hedy was born in Vienna in 1914. Her acting skills were discovered when she was a teenager, leading to an early acting career in Europe. At the age of 18, she married a wealthy Austrian businessman 15 years her senior, Friedrich Mandl. Mandl was very controlling, leading Hedy to eventually flee to Paris, but not before she had the chance to learn about applied science by sitting in on Mandl’s business meetings with scientists discussing military technology.

In Paris Lamarr met a talent scout who brought her to Hollywood in 1938, where she began a successful acting career. Her talents weren’t limited to the stage however – despite lacking any formal training, she loved inventing. Lamarr’s greatest technological contribution came during World War II, although it’s importance wouldn’t be fully recognized until years later.

Having learned about torpedoes during Mendl’s meetings, Lamarr’s curiosity was peaked when she heard of the possibility of jamming radio-controlled torpedoes in order to force them off-course. Brainstorming ideas to protect torpedoes from this interference, Lamarr envisioned a frequency-hopping signal that could quickly change frequencies to make it resistant to jamming. She shared her idea with her friend George Antheil. Antheil, a composer and pianist helped her synchronize a miniaturized player-piano mechanism with radio signals to achieve just that. Based on this device, they designed a frequency-hopping system that they patented in 1942. They donated it to the Navy in the hopes of aiding the war effort but the Navy was reluctant to take ideas from outside the military and, despite the technology’s potential, it was difficult to implement. It was not until 1962, during the Cuban missile crisis, that a version of their technology was adopted by Navy ships

In addition to its military importance, the frequency-hopping technology Lamarr & Antheil invented served as the foundation of “spread-spectrum” wireless communications that form the backbone of today’s Wi-Fi, GPS, and other wireless systems.

In recognition of her contribution Lamarr was inducted into the National Inventors Hall of Fame in 2014. An actress and a composer developed a technology that greatly shapes our modern world. So think you need to be an “academic” to be in STEM? Think again!

Marie Tharp

Some scientists find their life’s passion exploring the vast unknowns of the galaxies; others, like this week’s WiSE Wednesday honoree, Marie Tharp, find themselves drawn to mysteries at the bottom of the ocean. Working with a fellow geologist, Bruce Heezen, Tharp created the first scientific map to cover the entire ocean floor, and, in doing so, discovered a deep rift in a long chain of underwater mountains called the Mid-Atlantic Ridge. Tharp meticulously mapped this rift valley and interpreted it as strong evidence that the continents became separated by the movement of tectonic plates in earth’s outer layers – as the plates move apart, magma rises from deeper layers, leading to the formation of mountains like those composing the Mid-Atlantic Ridge. Tharp’s map was at first widely disputed because, at the time (the 1950s), the theory of continental drift was highly controversial. In fact, Heezen himself initially dismissed Tharp’s support of a continental drift hypothesis as “girl talk.” Nevertheless, Sharp persisted in analyzing as much information on the ocean’s floor as she could get her hands on (she initially wasn’t allowed on data collecting expositions because she was a woman, so she had to depend on data Heezen and others collected). As Heezen and other geographers engaged in lively, often heated, debates, Tharp worked tirelessly in the background. The more she analyzed the data, the stronger her conclusions became, and Heezen and the rest of the scientific community eventually came around to accepting the continental drift theory, propped up by the confirmation of Tharp’s work by National Geographic-funded explorations.  

Tharp was born in Michigan in 1920 and received a degree in English from Ohio University in 1943, followed by a Master’s in petroleum geology from the University of Michigan. She started a job in micropaleontology in Oklahoma, but found the work tedious so she took night classes to earn another degree in mathematics. Three degrees in hand, she took a job at Columbia, where she began her longtime collaboration with Heezen and performed her ground-breaking work. Despite remaining largely in the background through much of her career, Tharp eventually received recognition for her findings - the Library of Congress named her as one of the four greatest cartographers of the 20th century; Google Earth added a layer to view her historical map; and she received Columbia’s first annual Lamont-Doherty Heritage Award. Tharp died of cancer in 2006 at the age of 86, but not before she was finally given opportunities to go on data-gathering explorations.

Photo credit: Bruce Gilbert